Gas Detonation Forming by a Mixture of H2+O2 Detonation
نویسنده
چکیده
Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detonation tube. The detonation wave goes through the detonation tube and acts as a blast load on the steel blank and forms it. Experimental results are compared with a finite element model; and the comparison of the experimental and numerical results obtained from strain, thickness variation and deformed geometry is carried out. Numerical and experimental results showed approximately 75 – 90 % similarity in formability of desired shape. Also optimum percent of gas mixture obtained when we mix 68% H2 with 32% O2. Keywords—Explosive forming, High strain rate, Gas detonation, Finite element analysis.
منابع مشابه
Efficient Oxyhydrogen Mixture Determination in Gas Detonation Forming
Oxyhydrogen is a mixture of Hydrogen (H2) and Oxygen (O2) gases. Detonative mixtures of oxyhydrogens with various combinations of these two gases were used in Gas Detonation Forming (GDF) to form sheets of mild steel. In die forming experiments, three types of conical dies with apex angles of 60, 90 and 120 degrees were used. Pressure of mixtures inside the chamber before detonation was varied ...
متن کاملPaper Title: Oblique Detonation Stabilized on a Hypervelocity Projectile Authors
We present new experimental results demonstrating the initiation and stabilization of an oblique detonation by a hypervelocity projectile. Projectiles 25 mm in diameter were launched at nominal velocities of 2700 m/s into stoichiometric H2-O2-N2 mixtures at pressures between 0.1 and 2.5 bar. A critical threshold in initial pressure was found to be required for the establishment of detonations. ...
متن کاملNumerical simulation of detonation reignition in H2-O2 mixtures in area expansions
Time-dependent, two-dimensional, numerical simulations of a transmitted detonation show reignition occuring by one of two mechanisms. The first mechanism involves the collision of triple points as they expand along a decaying shock front. In the second mechanism ignition results from the coalescence of a number of small, relatively high pressure regions left over from the decay of weakened tran...
متن کاملروش بررسی امکان وقوع تراک در جریانهای با سرعت بالا
In this paper, an evaluation method is presented for assessment of detonation occurrence hazard on the basis of some experimental data. This method is applied on a supersonic jet at the exit of a propulsion system including hydrogen. Because of mixing hydrogen with the surrounding air, a combustible mixture is occurred which detonation occurrence hazard is assessed in this mixture. Types of det...
متن کاملDetailed Simulations of Shock-Bifurcation and Ignition of an Argon-diluted Hydrogen/Oxygen Mixture in a Shock Tube
Detailed simulations of the bifurcation and ignition of an Argon-diluted Hydrogen/Oxygen mixture in the two-stage weak ignition regime are performed. An adaptive meshrefinement (AMR) technique is employed to resolve all relevant physical scales that are associated with the viscous boundary-layer, the reaction front, and the shock-wave. A high-order hybrid WENO/central-differencing method is use...
متن کامل